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Abstract 

A computational model based on energy minimiz- 
ation has been developed for/3-MgESiO4. The poten- 
tial energy of the model includes Coulomb and repul- 
sive interactions between non-bonded atoms as well 
as bond-distance-stretching energy terms for Si-O 
distances and bond-angle-bending energy terms for 
O-Si-O angles. Some of the energy parameters are 
treated as common to a- and /3-Mg2SiO4, and are 
obtained by varying these parameters until both the 
calculated atmospheric-pressure structure and the 
elastic constants of a-Mg2SiO4 agree as closely as 
possible with the experimental ones. Other necessary 
energy parameters for the modeling of fl-Mg2SiO4 
are derived to reproduce the observed atmospheric- 
pressure structure of fl-Mg2SiO4. The potential model 
obtained is successfully used for the calculation of 
the elastic constants of fl- Mg2SiO4. Subsequently, the 
model is applied to the simulation of crystal structures 
of fl-MgESiO4 under high pressure. The pressure 
derivatives of the elastic constants of fl-MgESiO4 are 
also evaluated using the model. The present model 
is compared with a recently proposed one for /3- 
Mg2SiO4. 

Introduction 

Three polymorphs of Mg2SiO4 [olivine (ot), modified 
spinel (/3) and spinel (V)], are major constituents of 
the earth's mantle. It is therefore important to under- 
stand their crystal structures and physical properties 
and how they change with pressure. 

Modeling of these polymorphs in terms of poten- 
tial-energy calculations has been performed by 
Miyamoto & Takeda (1980, 1984), Catti (1981, 1982), 
Matsui & Matsumoto (1982), Catlow & Parker (1982), 
Price & Parker (1984), and Matsui & Busing (1984a). 
Matsui & Busing (1984a, b) emphasized that a realis- 
tic model of the mineral should be obtained so as to 
reproduce not only the observed crystal structure but 
also the experimental elastic properties; they showed 
that two early models for a-MgESiO4 (Miyamoto & 
Takeda, 1980; Matsui & Matsumoto, 1982) succeeded 
in reproducing the observed atmospheric-pressure 
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structure fairly well; however, they failed to repro- 
duce the experimental elastic constants. 

Horiuchi & Sawamoto (1981) have determined the 
crystal structure of/3-Mg2SiO4 by single-crystal X-ray 
analysis. Recently Sawamoto, Weidner, Sasaki & 
Kumazawa (1984) have measured elastic constants 
of/3-Mg2SiO4 by Brillouin spectroscopy. 

The purpose of this paper is to derive a reasonable 
computational model for/3-Mg2SiO4, which can be 
further applied to the simulation of the crystal struc- 
tures under high pressure as well as to the prediction 
of the pressure dependencies of the elastic constants. 

During the preparation of this manuscript, a paper 
on a similar modeling for /3-Mg2SiO4 came to our 
notice (Price, Parker & Yeomans, 1985). It is 
worthwhile to compare the present results with those 
reported by Price et al. because they have used a 
somewhat different model. 

Potential-energy model 

Crystal-lattice energy 
The crystal-lattice energy is assumed to be the sum 

of the non-bonded and covalently bonded energy 
term s: 

Wcryst = Wnon-bond -~ Wcovalent bond- ( 1 ) 

The non-bonded energy used in this study is repre- 
sented by an atom-atom potential of the form: 

Wnon-bond = 1/(2Z) ~ ~ {q,cbr~ 1 + f (  B, + Bj) 
i j 

xexp[ (A ,+Aj -r i ; ) / (B ,+Bj ) ]} ,  (2) 

where r U is the distance between atoms i and j, and 
Z is the number of formula units per cell. The first 
term represents the Coulomb energy between atoms 
with net charges qi and qj, and the second term 
describes the repulsive interaction in a form suggested 
by Gilbert (1968). Here f is a standard force of 
4.184 kJ mol -~/~-~, Ai and Aj are repulsive radii, and 
B~ and Bj are the softness parameters of the atoms 
concerned. The summation over i includes one unit 
cell and j is summed over all atoms in the crystal 
except those which are bonded directly to the atom i. 
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The covalently bonded energy, Wcovalentbond , 

includes bond-distance-stretching energy terms for 
Si-O distances of the type: 

V(d)=½Kd(d-do) 2, (3) 

and bond-angle-bending potentials for O-Si-O 
angles of the type: 

V(a)=½K~(a-ao) 2. (4) 

Here d and a are the calculated bond distance and 
angle for a structural model, do and so are the 
unstrained distance and angle, and Kd and K,, are 
the force constants for the distance and angle, respec- 
tively. Bond-angle-bending potentials for Si-O-Si 
angles were neglected in this study. 

Derivation of energy parameters 

Before obtaining a potential for /3-Mg2SiO4, we 
first derived a set of energy parameters for a- 
Mg2SiO4, because the potential should be transferable 
so that one set of energy parameters for atoms or 
groups of atoms can be used to construct potential 
functions for the other system. Crystals of a-Mg2SiO4 
consist of Mg ions and isolated SiO4 groups. Matsui 
& Busing (1984a) presented a potential model for 
a-Mg2SiO4, where they treated the SiO4 ions as rigid 
bodies and assumed the net charges on the Mg ions 
to be +2 lel. We extended their potential by using a 
flexible SiO4 model and by relaxing the net charges 
on the Mg ions. The required energy parameters were 
derived so as to reproduce both the experimental 
atmospheric-pressure structure (Fujino, Sasaki, 
Tak6uchi & Sadanaga, 1981) and the elastic constants 
(Graham & Barsch, 1969; Kumazawa & Anderson, 
1969) of a-Mg2SiO4, using a method similar to that 
described by Matsui & Busing (1984a). We will desig- 
nate the model thus developed for a-MgSiO4 as the 
MM1 potential. 

The optimized energy parameters in the MM1 
potential are listed in Table 1. The resulting net 
charges are qMg=+l '57,  qs i=+l '604  and qo = 
-1.186 lel. Fujino et al. (1981) have made an accurate 
X-ray diffraction analysis for a-Mg2SiO4, and 
obtained net charges of qMg(~)=+l'76, qMg(2)---- 
+1.74, qsi=+2.11, qo(~)=-1"52, qo(2)=-1"29 and 
qo(3) = -1.40[e[. McLarnan, Hill & Gibbs (1979) have 
carded out semi-empirical molecular-orbital 
(CNDO/2) calculations on a tetrahedral-octahedral 
cluster modeled from the arrangement in t~-Mg2SiO4, 
and presented qM~m=+l '38,  qMg(2)=+l'31, qsi = 
+0"86, qo(1)=--0"74, qo(2)=--0"82 and qo(3)= 
-0"81 le[. The values of net charges on atoms in the 
MM1 potential (Table 1) lie between the values 
obtained from these two groups. The optimized value 
of the force constant of the Si-O bond, 3.43× 
103kJmol - l~  -2, may be comparable with that 
derived by a molecular-orbital calculation for 

Table 1. Energy parameters used for a-Mg2SiO4 
(MM1) and/3-Mg2SiO4 (MM2) 

M M  1 M M  2 
N o n - b o n d e d  in te rac t ions  

qMg (led +1"570 +1"570 
qsi (lel) +1-604 +1.3195 
qo(non-bridging) (lel) - 1.186 - 1.111 
qo(bridging) (lel) - -  -0,730 
qo[O(1)] (lel) - -  -1-523 
AMg (~)  1-036 1"036 
Ao(non-bridging ) (,~) 1.775 1.775 
Ao(bridgin~) (,~) - -  1.727 
Ao[O(1) ] (A) - -  1.795 
BMg (/~) 0"052 0"052 
B o (,~,) 0"150 0"150 

Bond-d i s t a nc e  s t re tch ing  

Kd (Si-O) (103 kJ mol -I/%,-2) 3-43 3.43 
do(non-bridging Si-O) (/~) 1.442 1-442 
do(bridging Si-O) (,~) - -  1-556 

Bond-ang le  b e n d i n g  

K~(O-Si-O)(kJ mol - t  deg -2) 0.075 0.075 
ao(O--Si-O) (deg) 109.47 109.47 

orthosilicic acid, Si(OH)4 (4.00 x 103 kJ mol-1 A-2; 
Gibbs, Meagher, Newton & Swanson, 1981), and also 
with that obtained by a lattice-dynamics calculation 
for a-Mg2SiO4 (2.38 x 103 kJ mo1-1 A-2; Iishi, 1978). 
The softness parameter of the Mg ion was optimized 
to be 0.052 A, and is almost identical to that derived 
by using alkaline-earth halide crystals (0.0528A; 
Yuen, Murfitt & Collin, 1974). 

The MM 1 potential was then successfully applied 
to the calculations of the atmospheric-pressure struc- 
ture, and the elastic constants and their pressure 
derivatives for a-Mg2SiO4. Tables 2 and 3 show com- 
parisons of the calculated structure and elastic 
properties with those obtained from experiments. The 
calculations were made with the computer program 
WMIN (Busing, 1981), using the technique described 
by Busing & Matsui (1984). 

Next we applied the MM1 potential to the model- 
ing of fl-Mg2SiO4. Crystals of fl-Mg2SiO4 are ortho- 
rhombic with space group Imma and eight formula 
units per cell (Horiuchi & Sawamoto, 1981). The 
structure is based on a cubic closest-packed array of 
O atoms with Si and Mg atoms occupying tetrahedral 
and octahedral sites, respectively. The structure con- 
tains isolated 5i207 groups formed by two SiO4 
tetrahedra sharing an O atom. As shown in Fig. 1, 
there exist three different kinds of O atoms, the bridg- 
ing O atom O(2), the non-bridging O atoms 0(3) and 
O(4), and O atom O(1) which is not bonded to the 
Si atom. Therefore, different values for each qo and 
Ao were used for these three types of 0 atoms, 
although the same value of Bo was assumed for all 
three. Repulsive interactions of the Si atoms were 
neglected. The nine energy parameters, qMg, AMg, 
BMg, Ao(non-bridging), Bo, Kd(Si-O), d0(non- 
bridging Si-O), K~(O-Si-O) and ao(O-Si-O), were 
treated as common to a- and /3-Mg2SiO4 and were 
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Table 2. Comparison between observed and calculated 
structures for a- Mg2SiO4 

Observed* Calculated 

Lattice 
a (/~) 4.753 4.744 
b (/~,) 10.190 10.355 
c (/~) 5.978 6.058 
V (/~3) 289"6 297"6 

Mg-O distances (/~,) 
t[2] Mg(1)-O(1) 2.084 2.087 
[2] -O(2) 2.068 2.078 
[2] -0(3) 2-131 2-127 

(Mg(1)-O) 2.094 2.097 

[1] Mg(2)-O(l) 2.177 2.229 
[1] -0(2) 2.045 2.076 
[2] -0(3) 2.066 2.086 
[2] -0(3') 2.210 2.263 

(Mg(2)-O) 2.129 2.167 

Si-O distances (/~) 
[1] Si-O(1) 1.614 1-634 
[1] -0(2) 1.655 1.646 
[2] -0(3) 1.637 1.638 

(Si-O) 1.636 1.639 

O-S i -O angles (o) 
[1] O(1)-Si-O(2) 114.3 
[2] O(1)-Si-O(3) 116.1 
[2] O(2)-Si-O(3) 101.8 
[1] O(3)-Si-O(3') 104.8 

* From Fujino et al. (1981). 

113.5 
115.2 
102.5 
106.4 

t Numbers in square brackets refer to the multiplicity of  the 
bonds. 

all fixed at the values in the M M  1 potential developed 
for a-MgESiO4. The net charge on Si was calculated 
by the requirement of charge neutrality. The other 
six energy parameters, qo(non-bridging), qo(bridg- 
ing), qo[O(1)], Ao(non-bridging), Ao(bridging) and 
do(bridging Si-O), were derived using WMIN to 
optimize the energy parameters with respect to the 
observed crystal structure at atmospheric pressure 
(Horiuchi & Sawamoto, 1981). We will call the poten- 
tial model for fl-MgESiO4 thus obtained the MM2 
model, which is given in Table 1. Both the repulsive 
radii and the absolute values of the net charges deter- 
mined for the three types of O atoms are in the 

0 ~ b O o  

O S i  

LJ ~ ~Jo(3) 

Fig. 1. Part o f  the crystal structure of/3-Mg2SiO4 drawn using the 
program ORTEPII (Johnson, 1976). 

Table 3. Observed and calculated elastic constants, 
c O (TPa), and their pressure derivatives (dimensionless) 

for a-Mg2SiO4 

cq Ocq/OP 
/j Observed* Calculated Observed* Calculated 

11 0.329 0.317 8.4 8.0 
22 0.200 0.196 6-2 7-6 
33 0.236 0.241 6-4 6.4 
44 0.067 0-050 2.1 3.7 
55 0.081 0.077 1.7 1.9 
66 0.081 0-068 2.3 3.3 
12 0.065 0.076 4-5 5.8 
13 0.069 0-088 4.5 4.9 
23 0.073 0.079 3.8 4.3 

K t  0.131 0-138 5.2 5.8 

*Average of  values from Graham & Barsch (1969) and 
Kumazawa & Anderson (1969). 

t K :  bulk modulus  calculated from Voigt approximation.  

expected order, with the values for bridging O smal- 
lest and for O(1), which is not bonded to Si, largest. 

Model of Price, Parker & Yeomans 

Quite recently, Price, Parker & Yeomans (1985) 
have presented a computational model for /3- 
Mg2SiO4. They have described two different models: 
one is based on a fully ionic potential and the other 
is a partially ionic model. Of these we selected the 
latter model (P4a potential), because it produced 
both the observed structure and the elastic constants 
better than the former model. The crystal-lattice 
energy of the P4a potential is represented as the sum 
of non-bonded interactions between atoms, using 
equation (2), and covalent-bond energy terms with a 
Morse potential of the form 

V/j(r) = D0{ex p [ - 2 E , j ( r -  ro)] 

- 2 e x p [ - E o ( r - r o ) ] } ,  (5) 

where r is the calculated distance, and ro, D U and E U 
are the energy parameters to describe the covalent 
character of the Si-O bond. Bond-angle-bending 
energies were neglected. The required energy param- 
eters were derived by a least-squares fitting to the 
X-ray-determined structure of/3-Mg2SiO4 (Horiuchi 
& Sawamoto, 1981), in which some parameters were 
fixed at values presented by Price & Parker (1984) 
for the modeling of a-Mg2SiO4. 

The energy parameters in the P4a potential are 
listed in Table 4. A characteristic of the P4a potential 
is that the O ions are much harder than the Si and 
Mg ions, with mean Bo=0.07,  Bsi= 0.17 and mean 
BMg = 0.19/~ which is contrary to the general feature 
that in an isoelectric series of closed-shell ions the 
anions are softer than the cations (Butterfield & 
Carlson, 1972; Ida, 1976). 

The P4a potential includes more energy param- 
eters for the non-bonded interactions than the MM2 
potential. In contrast to the MM2 potential having 
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Table 4. Energy parameters in the P4a potential for 
/3-Mg2SiO4 reported by Price, Parker & Yeomans 

(1985) 

Non-bonded interactions 

qlvig(l), qMg(3) (led +1.726 Ao(non-bridging ) (/~) 1.4745 
qMs(2) (leD +1.715 Ao(bridgin~) (A) 1.4858 
qsi ([eD +1.380 Ao[O(1) ] (A) 1.6060 
qo(non-bridging) (led -1 "208 BMs(t), BMg(3) (A) O" 1969 
qo(bridging) (led -0.740 BMs(~ (A,) 0-1731 
qo[O(1)] (lel) -1.665 Bsi (A) 0-1706 
AMg(t), 4Mg(3 ) (ilk) 1.6297 Bo(n0n-bridging) (/~) 0.0568 
AMs(2) (A) 1-5397 Bo(bridgin~) (,~) 0.0655 
Asi (A) 1.0763 Bo[O(1)] (A) 0"0833 

Morse potential for Si-O 
D(non-bridging Si-O) 

(kJ tool -t)  430.8 r o (,~) 1 "63 
D(bridgingtSi-O) 

(kJ mol- ) 250.8 E(A, -1) 1.975 

Table 5. Observed and calculated structural data for 
f l - M g 2 S i O 4  

Observed* P 4a M M 2 

a (A,) 5-698 5.695 5-696 
b (A) 11-438 11.508 11.515 
c (A) 8.257 8.381 8.365 
V (/~3) 537.7 549.3 548.7 

z[Mg(2)] 0.9701 0.9598 0.9648 
y[Mg(3)] 0.1276 0.1290 0.1286 
y[Si] 0-1198 0.1173 0.1195 
z[Si] 0.6168 0.6134 0.6151 
z[O(1)] 0-2166 0.2109 0-2106 
z[O(2)] 0.7164 0.7034 0.7110 
y[O(3)] 0.9900 0-9890 0.9893 
z[O(3)] 0.2558 0.2564 0.2578 
x[O(4)] 0.2615 0-2600 0.2614 
y[O(4)] 0-1225 0.1210 0-1224 
z[O(4)] 0.9925 0.9931 0.9928 

* From Horiuchi & Sawamoto (1981). 

the same energy parameters for the Mg ions, the P4a 
potential was developed by treating the Mg(2) ion 
and the other Mg ions separately. In the M M 2  poten- 
tial the same value of Bo was assumed for the three 
types of  O atoms; on the other hand, in the P4a 
potential different values of Bo were used for these 
three O atoms. Furthermore, the non-bonded interac- 
tions between Si and adjacent O atoms were omitted 
and these interactions were represented using the 
quadratic potential of  form (3) for the M M 2  poten- 
tial, while the non-bonded interactions between these 
Si and O atoms were included in addition to the 
Morse potential of form (5) for the P4a potential. 

Reliability of the potential model 

In order to test the reliability of  the M M 2  model we 
calculated the crystal structure and elastic constants 
at atmospheric pressure for fl-Mg2SiO4 based on the 
M M 2  potential, using WMIN (Busing, 1981). The 
results of  the calculations are listed in Tables 5, 6 
and 7 for the structural data, bond distances and 
angles, and elastic constants, respectively, together 

Table 6. Observed and calculated bond distances (A,) 
and angles (o) for fl-Mg2SiO4 

Observed* P4a M M 2  

Mg-O distances 
t[2] Mg(1)-O(3) 2-115 2.153 2-160 

[4] -0(4)  2.046 2.034 2.051 
[1] Mg(2)-O(1) 2"035 2"104 2"057 
[ 1 ] -0(2)  2"095 2" 149 2" 123 
[4] -0(4)  2"093 2" 115 2.105 
[2] Mg(3)-O(1) 2"016 2"018 2.022 
[2] -0(3)  2"123 2"151 2"146 
[2] -0(4)  2.128 2"155 2.154 

I:~ 0.030 0-022 

Si-O distances 
[1] Si-O(2) 1.701 1-703 1.704 
[1] -0(3)  1.638 1.639 1-643 
[2] -0(4)  1.632 1.633 1-632 

I:~ 0"001 0-003 

O - S i - O  angles 
[1] O(2)-Si-O(3) 111-1 112-0 111.6 
[2] -0(4)  104.5 102"6 104" 1 
[2] 0(3)-Si-0(4) 111.7 112"5 111.9 
[1] 0(4)-Si-0(4')  112-8 113.7 112-8 

I~: 1.3 0.3 

S i -O-Si  angle 
[1] Si-O(2)-Si' 122.2 127.4 123.8 

* From Horiuchi & Sawamoto (1981). 
t Same as in Table 2. 
$ I = [Y. (Pobs--Pealc)2/n] 1/2, where p and n are the parameters 

and number of  parameters respectively. 

Table 7. Observed and calculated elastic constants, 
c o (TPa), for fl-Mg2SiO4 

c 0 Observed* P4a M M 2  

11 0.360 0-382 0.389 
22 0.383 0.363 0-374 
33 0.273 0.302 0.271 
44 0.112 0.080 0-091 
55 0-118 0-090 0.107 
66 0.098 0-108 0.101 
12 0.075 0.140 0.124 
13 0-110 0-123 0.124 
23 0.105 0.127 0.118 
I f  0-33 0.24 
K 0.177 0.203 0-196 

* From Sawamoto et aL (1984). 
t I = {~. [(Pobs--p=lc)/Pobs]2/n} 1/2, where p and n are the par- 

ameters and number of  parameters respectively. 

with the reported values using the P4a potential, for 
comparison. Tables 6 and 7 also give root-mean- 
square deviations between observed and calculated 
values for the M M 2  and P4a potentials. 

As can be seen in Tables 5 and 6, the M M 2  model 
reproduces the observed structure fairly well, and the 
accuracy of the M M 2  model is slightly better than 
that of the P4a model, in spite of the M M 2  potential 
being constructed with fewer energy parameters than 
the P4a potential as described before. Root-mean- 
square deviations in the Mg-O distances, Si-O dis- 
tances and O-Si -O angles, and the mismatch in the 
Si-O-Si  angle are 0.030, 0-001 A,, 1.3 and 5-2 ° respec- 
tively for the P4a model,  and 0.022, 0.003 A,, 0.3 and 
1.6 ° respectively for the MM2 model (Table 6). 
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It should be noted that the energy parameters were 
derived to fit the observed structure in the two models; 
on the other hand, the experimental elastic constants 
were not included as observational quantities in either 

Parameter, p work and, therefore, the elastic constants are more 
Lattice useful for checking purposes than the crystal struc- 

a 

ture. In addition to this the accuracy of a potential b 
is critically tested by its ability to reproduce elasticity c 
data more than the crystal structure, because the v 
calculated structure simply depends on the position Mg-O distances 
of the potential minimum, while the elastic properties 5-[2] Mg(1)-O(3) 

[4] -0(4) 
depend on the curvature (second derivatives) of the (Mg(1)-O> 
potential (Born & Huang, 1962). [1] Mg(2)-O(1) 

When the calculated elastic constants, based on the [1] -0(2) 
two models, are compared with those from experi- [4] -0(4) 

(Mg(2)-O) 
ment, it appears that the M M 2  potential is better 

[2] Mg(3)-O(1) 
than the P4a potential, with root-mean-square devi- [2] -o(3) 
ations relative to the experimental values of 0.33 for [2] -0(4) 
P4a and 0-24 for MM2.  This superiority of the M M 2  (Mg(3)-O) 
potential over the P4a potential may arise from the si-o distances 
softness parameters of the atoms used in the two [1] si-o(2) 

[1] -0(3) 
works [with the O ions being much softer than the [2] -o(4) 
Mg ions for the M M 2  potential (Table 1), but much <si-o> 
harder than the Mg ions for the P4a potential (Table 
4)], or may be the result of including the bond-angle- 
bending terms for the O-Si-O angles in the M M 2  
potential. 

Effects of pressure 

fl-Mg2SiO4 is an important constituent of the earth's 
mantle and, therefore, it is most desirable to charac- 
terize the effects of pressure on the crystal structure 
and on the elastic constants. So far, the lattice param- 
eters offl-Mg2SiO4 have been measured up to 10 GPa, 
using X-ray powder diffraction analysis (Mizukami, 
Ohtani, Kawai & Ito, 1975). Experimental pressure 
dependencies have not been reported for the detailed 
crystal structure or for the elastic constants. 

The success of the M M 2  potential in reproducing 
the observed atmospheric-pressure structure as well 
as the elastic constants for/3-Mg2SiO4 encouraged us 
to apply the model to the calculations of the pressure 
dependencies of the structure and elastic constants. 
The crystal structure and elastic constants of fl- 
Mg2SiO4 at hydrostatic pressures of +2-5 and -2-5 
GPa* were calculated using the technique described 
by Busing & Matsui (1984), and then their pressure 
derivatives at zero pressure were obtained from 
averages of the differences in the parameters at 
-2 .5  GPa and zero pressure and at zero pressure and 
+2.5 GPa. Table 8 lists the resultant compressibilities 
of the lattice parameters, ihteratomic distances and 
bond angles. The volume compressibility and the 

* A positive value for the hydrostatic pressure implies compress- 
ion; a negative value implies tension. 

Table 8. Calculated compressibilities (TPa-I) of  the 
lattice parameters, interatomic distances and bond 

angles for fl- Mg2SiO4 

- (I/p)(Op/OP) 

1"32" 
1 "47* 
2.42* 
5"21" 

3"57 
1"51 
2"20 

1 "70 
4"33 
1.78 
2-19 

1"55 
2-16 
2"67 
2"13 

0"57 
0-67 
0"70 
0"66 

O-Si -O angles 
[1] O(2)-Si-O(3) 0.34 
[2] -0(4) -0.17 
[2] O(3)-Si-O(4) -0.09 
[1] O(4)-Si-O(4') 0.18 

Si-O-Si angle 
Si-O(2)-Si '  1.16 

* Compressibilities calculated using the experimental elastic 
constants (Sawamoto et al., 1984) are 1.73, 1-63, 2.34 and 
5-70 TPa -1 for a, b, c and V, respectively. 

i- See Table 2. 

linear compressibilities of a, b and c, calculated using 
the experimental elastic constants (Sawamoto et al., 
1984), are 5.70, 1.73, 1-63 and 2.34TPa -1, respec- 
tively, in reasonable agreement with our calculated 
values of 5.21, 1-32, 1.47 and 2.42 TPa -1, respectively. 
This agreement gives us some confidence for the 
calculated pressure derivatives of the interatomic dis- 
tances and bond angles listed in Table 8. 

The Mg-O bonds are predicted to be much more 
compressible than the Si-O bonds, with the mean 
eompressibilities of the Mg-O and Si-O distances 
being 2-17 and 0.66 TPa -1, respectively. This is con- 
sistent with the experimental results obtained from 
high-pressure single-crystal X-ray analyses for for- 
sterite (a-Mg2SiO4; Hazen, 1976) and diopside 
(CaMgSi206; Levien & Prewitt, 1981a) where the Mg 
octahedra are significantly softer than the Si 
tetrahedra. The Si-O-Si angle is calculated to be 
much more flexible with pressure than the O-Si-O 
angles, with the compressibility of the Si-O-Si angle 
being 1.2 TPa-I; in contrast, the compressibilities of 
the O-Si-O angles range from -0 .2  to +0.3 TPa -~ 
again in accordance with the experimental results 
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Table 9. Calcu la t ed  pressure  der ivat ives  o f  the elastic 
cons tan t s  ( d i m e n s i o n l e s s )  f o r  fl- MgESiO4 

ij ocij/ o P ij oco/ o P 
11 6-7 66 2.8 
22 7.1 12 5.5 
33 11.4 13 3.2 
44 0.9 23 4.2 
55 0.6 K 5.7 

obtained from high-pressure single-crystal X-ray 
analyses for a -quar t z  (SiO2; d 'Amour ,  Denner  & 
Schulz, 1979; Levien, Prewitt & Weidner,  1980), diop- 
side (CaMgSi206,  Levien & Prewitt, 1981a),  and 
coesite (SiO2; Levien & Prewitt, 1981b) where, in 
each substance,  on average,  the S i -O-Si  angle 
changes with pressure more than the O - S i - O  
angle. 

The predicted pressure derivatives of  the elastic 
constants are given in Table 9. It should be recalled 
that  the M M 2  potential  for fl-MgESiO4 was 
developed by t ransferr ing the M M  1 potential  derived 
in advance for a-MgESiO4, and the M M 1  potential  
succeeded ra ther  well in reproducing not only the 
observed elastic constants  for a-MgESiO4 but  also 
their pressure derivatives, as can be seen in Table 3. 
As the M M 2  potential  also produced the experi- 
mental  elastic constants of /3-Mg2SiO4 well (Table 
7), the accuracies of  the calculated pressure deriva- 
tives of  the elastic constants,  based on the M M 2  
potential,  may  be expected to be of  a similar order  
as those for a-MgESiOa. 
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